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Abstract: Pregnancy is a highly regulated process, requiring strict control of the immune system in order to prevent 

rejection of the semiallogenic foetus. One aspect of pregnancy immunology that has been of great interest is the influence 

of female sex and pregnancy associated hormones, such as progesterone and oestrogen, on cells of the immune system. 

This review evaluates studies investigating the ability of these hormones to modulate the function of cells of both the 

innate and adaptive arms of the immune system and mechanisms by which immunity to infection can be altered due to 

increased levels of progesterone and oestrogen. Finally, the influence of pregnancy on the most common autoimmune 

diseases, on toxoplasmosis and on malaria is reviewed. 

1. INTRODUCTION 

 Pregnancy is a complex process in which cells and 
molecules of the maternal immune system interact in such a 
way as to prevent the rejection of the semiallogenic foetus. 
Development and modulation of pregnancy is controlled by 
the presence and levels of various sex and pregnancy 
associated hormones, such as oestrogens and progesterones. 
In addition, the cytokine environment is important for a 
successful pregnancy, with studies showing a Th1 
environment to be associated with abortion and a Th2 
environment allowing the successful continuation of 
pregnancy [1]. 

 The elevated levels of oestrogen and progesterone 
observed during pregnancy possess a number of modulatory 
functions on cells of the immune system, including 
macrophages, natural killer (NK) cells, dendritic cells (DCs), 
T cells and B cells. The endometrium is one of the most 
important organs during pregnancy

 
[2] and presents an 

immunologically competent environment, with 30% of cells 
being of the immune system

 
[3]. Within the uterus of non-

pregnant women, NK cells, macrophages, T cells and B cells
 

are abundant [2-4] and inhibit the implantation and the 
development of the embryo. However, during pregnancy, the 
activity of these cells against the foetus is specifically 
suppressed by oestrogen and progesterone, allowing 
successful embryo implantation

 
[5-9]. 
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2. EFFECT OF SEX HORMONES ON IMMUNE CELL 

FUNCTION 

2.1. Innate Immunity 

Macrophages 

 Macrophages are known as Hofbauer cells in the human 
foetal chorionic villus of the placental unit [10]. Their 
distribution throughout uterine tissue depends on oestrogen 
and progesterone levels throughout the oestrous cycle [11]. 
They are present at the foetal-placental interface, in 
particular, around the spiral arteries, where they act to 
support the process of trophoblast invasion of the 
endometrium by phagocytosing apoptotic cells

 
[12]. It has 

been suggested that macrophages within the decidua of the 
first trimester display characteristics of the alternatively 
activated phenotype as opposed to the classically activated 
phenotype

 
[13]. However, in vitro studies have observed that 

the influence of 17 -oestradiol on macrophage function is 
varied, based on which cell line, species, or hormone 
concentration is used. 

 17 -oestradiol administration to RAW 264.7 cells for 4 
hours prior to LPS administration prevents the induction of 
the morphological changes typically seen with LPS alone 
[14]. In addition 17 -oestradiol can modulate the ability of 
macrophages to produce various cytokines, for example, the 
downregulation of IL-1 , IL-6 and TNF-  by murine splenic 
macrophages [15, 16]. Studies with LPS-treated rat peritoneal 
macrophages have shown that 17 -oestradiol influences 
TNF-  production by these in a concentration-dependent 
manner [17], whereas 17 -oestradiol has no effect on TNF-  
production by cells of the murine J774A.1 line [18]. 

 Macrophage function is also subject to modulation by 
progesterone. It has been shown in both rat and murine 
macrophages that progesterone reduces LPS and IFN-  
stimulated nitrite production in a dose-dependent manner  
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[19, 20]. Jones et al. (2008) [21] further describe the ability 
of progesterone to down modulate nitrite production by 
murine bone marrow derived (BMD) macrophages through 
binding to the glucocorticoid receptor (GluR) rather than the 
progesterone receptor (PR). By comparison, IL-12 
production by macrophages can be modulated by 
progesterone through either the glucocorticoid or 
progesterone receptor [21]. 

 These experimental systems using macrophage cell lines 
and LPS can only be used to speculate the role that the 
female sex hormones have on macrophages found within the 
female reproductive tract or at the foetal-maternal interface. 
From these results, however, it can be assumed that 
oestrogens and progesterone will act to down modulate the 
inflammatory functions of these cells, as this would prove 
detrimental to the successful continuation of pregnancy. 

Dendritic Cells 

 Within the uterus, DCs protect the host against pathogens 
without endangering the developing foetus by uptake of the 
apoptotic particles of the invading trophoblast [22]. CD83+ 
CD25+ DCs are present within the human decidua, as shown 
by both immunocytochemistry

 
[23] and by flow cytometry

 

[24]. Juretic et al. (2004) [25] have reviewed the role of DCs 
at the maternal-foetal interface and provide a model whereby 
stimulation of immature DCs in a Th2-bias environment 
(such as during pregnancy) will promote tolerogenic 
function, and stimulation in a Th1 bias environment will 
result in the maturation of DCs with a high capacity for 
antigen presentation. Since the Th2 environment associated 
with pregnancy is thought to be related to the high levels of 
progesterone and oestrogen present within the female 
reproductive tract, a great deal of focus has recently centred 
on the influence of these hormones on DCs. 

 Initial studies on the immunomodulation of DCs by 
oestrogens were carried out through use of toremifine and 
tamoxifen [26, 27]. These antioestrogens inhibit the 
differentiation of monocytes into DCs, suggesting that 
oestrogens are important in the development of DCs from 
their precursors. This was confirmed in studies by 
Paharkova-Vatchkova et al. (2004) [28], who showed that 
17 -oestradiol promotes the differentiation of DCs from 
murine bone marrow precursors, rather than increasing the 
proliferation of existing DCs. Furthermore, in recent studies 
it is demonstrated that DC differentiation is regulated by the 
oestrogen receptor-  (ER- ) [29]. 

 17 -oestradiol has the ability to modulate cytokine 
production by DCs. However, there is a lack of consistency 
between studies, as it appears to be biphasic in its functions, 
dependent upon which concentration is used [30-33]. For 
example, production of the proinflammatory cytokine IL-6 
by immature peripheral blood mononuclear cell (PBMC)-
derived human DCs is only affected by 17 -oestradiol at 
concentrations above 1mg/ml where a dose-dependent 
increase in IL-6 production is observed [34]. 

 IL-10 is an anti-inflammatory cytokine and although 
some studies have shown that 17 -oestradiol has no effect on 
IL-10 production by immature PMBC-derived DCs [34], 
others have found that 17 -oestradiol can cause a significant  
 

increase in IL-10 production in human PBMC-derived DCs 
up to a concentration of 10ng/ml [31], a level which 
corresponds to pregnancy. 

 The ability of 17 -oestradiol to modulate IL-12 production 
by immature and mature DCs is below the range of detection 
[31, 34]. Similarly, levels of the proinflammatory cytokine 
TNF- , either released by immature DCs or found 
intracellularly, are unaffected by 17 -oestradiol [31, 33, 34]. 
The effect of progesterone on cytokine production reveals that 
in murine BMD-DCs, IL-6 and IL-12 production is unaffected, 
however, IL-10 and TNF-  is increased [31]. Since TNF-  is a 
Th1 proinflammatory cytokine, it is generally regarded as 
dangerous to the developing foetus. However, in vivo, 
progesterone will not be found in isolation and therefore if 
TNF-  levels are looked at in response to both progesterone and 
oestrogen at a range of concentrations, then it can be seen that 
TNF-  remains at basal levels [31]. 

Natural Killer Cells 

 Studies in murine models have found that uterine natural 
killer (uNK) cells are crucial for successful implantation and are 
found on the mesometrial side of the pregnant uterus

 
[35]. 

During the first trimester of pregnancy in humans, uNK cells 
reach peak numbers, making up 70% of all lymphocytes 
present, however by full-term pregnancy, no uNK cells are 
detectable

 
[36]. NK cells are a well-known source of IFN  and 

studies in IFN-
-/-

 mice and RAG-2
-/-

c
-/-

 mice demonstrate that 
IFN-    production by murine uNK cells is important for vascular 
remodelling, maintenance of the deciduas within the second 
trimester and regulation of the uNK cell population

 
[37-40]. 

Decidual NK (dNK) cells have the potential to produce not only 
Th1-associated cytokines (NK1), but also Th2-associated 
cytokines (NK2) given an appropriate stimulus, and 
immunoregulatory cytokines such as TGF-  (NK3) and IL-10 
(Nkr1)

 
[41], which would contribute to the provision of a 

suitable environment for successful pregnancy. Decreased 
numbers of Nkr1 and NK3 cells have been associated with the 
phenomenon of spontaneous abortion [41]. Furthermore, in 
humans, the non-classical MHC class I molecule HLA-G is 
expressed in the placenta and can inhibit trafficking of maternal 
NK cells across the placenta

 
[42], thereby protecting the foetal 

cells from rejection
 
[39]. 

 NK cell activity differs throughout the human menstrual 
cycle, with higher levels of activity observed in those women in 
the follicular phase of the cycle than the luteal phase

 
[43]. This 

suggests that NK cells are influenced by oestrogen and 
progesterone. As illustrated in Fig. (1), NK cell activity can also 
be modulated by the release of Progesterone-Induced Blocking 
Factor (PIBF), a 34-kDa protein produced by decidual 
lymphocytes upon exposure to progesterone. Despite being 
necessary during pregnancy at the foetal-maternal interface, 
uNK cells still possess high concentrations of perforin, a 
molecule that mediates NK cell cytotoxicity. PIBF has been 
found to downmodulate the cytotoxic activity of NK cells [44-
46] through inhibition of arachidonic acid release from 
lymphocytes, which subsequently reduces prostaglandin 
production and IL-12 release [47]. IL-12, in conjunction with 
IFN- , normally promotes NK cell activity. In this setting, 
lowered NK cell activity contributes to the successful 
continuation of pregnancy. 
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2.2. T Cells 

 It has been observed that during pregnancy there is a 
general substantial improvement in the symptoms of Th1-
associated autoimmune diseases such as multiple sclerosis, 
rheumatoid arthritis (RA) and thyroiditis. For example, only 
patients with rheumatoid arthritis negative for autoantibodies 

improve during pregnancy [48]. This has been widely 
attributed to a bias towards a Th2 cytokine environment [49]. 

 The cytokine profile is important for the maintenance of 
pregnancy. Murine studies have found that IFN-  is only 
detectable during the first and second trimesters of 
successful pregnancy, whereas the Th2 cytokines IL-4, IL-5 

 

Fig. (1). Examples of effects of Progesterone Induced Blocking Factor (PIBF) on cells of the immune system. Progesterone induces 

production of PIBF from deciudal lymphocytes, which can act to potentiate the Th2 environment associated with pregnancy. PIBF reduces 

NK cell cytotoxicity, stimulates production of asymmetric antibodies, and increases IL-4 production by a STAT6 dependent mechanism. In 

doing so, Th1 responses are inhibited [44-46]. 
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and IL-10 are constitutively secreted by the foetal-placental 
unit until term [50]. Makhseed et al. (2001) [1] describe a 
strong Th1 bias in abortion-prone women and recurrent 
aborters, in comparison with women who have normal 
pregnancies. 

 Examination of the effects of pregnancy hormones on T 
cell populations have identified potential explanations to the 
shift towards to Th2 environment. In vitro studies illustrate 
that progesterone can influence the functional differentiation 
into Th1 and Th2 subsets by enhancing IL-4 and IL-10 
producing T cells and reducing the ability of T cells to 
secrete IFN-  [51]. 

 Another potential mechanism for the modulation of 
Th1/Th2 balance is via the action of PIBF (Fig. 1). This 
molecule contributes to the reduction in cell-mediated 
responses that could be detrimental during pregnancy. In 
addition to the prevention of NK cell activity [44-46], PIBF 
has been shown to skew the immune environment to a Th2 
phenotype through increasing the production of IL-3, IL-4 
and IL-10 from both CD4+ and CD8+ T cells in vitro [52] 
and in vivo [53]. Kozma et al. (2006) [54] have suggested 
the existence of a novel IL-4R, comprised of the IL-4R  
chain in association with a GPI-anchored PIBF receptor, 
which subsequently activates STAT6 upon binding of PIBF. 
This mechanism occurs through protein kinase C (PKC) 
phosphorylation without any adjustments in intracellular 
Ca

2+
 levels [55]. 

 As reviewed by Pernis (2007) [56], oestrogens can also 
modulate various aspects of CD4+ T helper cell development 
and function. Oestrogens can influence the Th1/Th2 balance 
by depressing Th1 and favouring Th2 responses [30]. 
Consequently, females exhibit higher Th2 immunity than 
males, and therefore produce higher levels of IL-4, IL-5, IL-
6 and IL-10 [57]. Contrary to this, a study by Fox et al. 
(1991) [58] has shown that 17 -oestradiol directly stimulates 
the IFN-  promoter, which would suggest a role for 
oestrogens in the development of a Th1 response. 
Furthermore, studies show that 17 -oestradiol has the 
capability to induce the development of IFN-  producing 
cells [59]. The contradictory Th1 and Th2 inducing ability of 
the oestrogens could be due to the concentration present, as 
suggested by Beagley and Gockel (2003) [30]; as low 
concentrations may favour IFN-  production and higher 
concentrations may favour IL-10 production by the same 
cells. Therefore 17 -oestradiol is biphasic in its actions, with 
low doses facilitating induction of immune responses and 
higher doses, such as those present during pregnancy, 
suppressing immune activation. 

 As well as acting to influence mature T cells through 
alteration of cytokine production, both progesterone and 
oestrogen influence T cell development. Moreover, 
progesterone can inhibit T cell lymphopoiesis at the pre-T 
cell (CD3- CD44+ CD25+) stage in a progesterone-receptor 
(PR) dependent mechanism during pregnancy, by a process 
also described as necessary for normal fertility [60]. In 
contrast, during a subsequent study by Rijhsinghani et al. 
(1996) [61], it was found that progesterone had no ability to 
block T cell development, with oestrogen instead having an 
effect on T cell development. As well as reducing thymus 
size and cellularity, oestrogen reduced the numbers of both 
the CD4+ and CD8+ T cell populations [61]. 

 In addition to the alteration of Th1 and Th2 cell 
behaviour in the presence of female sex hormones, tolerance 
of the semiallogenic foetus is also achieved through the 
actions of the CD4+CD25+ regulatory T cells (Tregs) 
population. These cells have been implicated in the control 
of autoimmune diseases and in doing so can act to potentiate 
self-tolerance. This concept has been applied in many 
studies, both human and murine, to understand the role of 
these cells in maintenance of maternal tolerance of the foetus 
[reviewed 62, 63]. Human Tregs have been classified into 
CD4+CD25

low
 and CD4+CD25

high
 populations, with the 

former having no immunoregulatory functions and the latter 
having a strong potential for regulation [62]. CD4+CD25

high
 

Tregs constitute 2-6% of CD4+ T cells in humans [62]. In 
mice, Tregs are simply described as CD4+CD25+, and 
constitute approximately 10% of CD4+ T cells. The 
existence and role of these cells in the maintenance of 
pregnancy has been elucidated by the identification of the 
essential transcription factor Foxp3 as a marker for the cell 
type [64, 65]. Pregnancy is associated with an increase in the 
number of Tregs in the blood, most prevalent during the 
second trimester [66] and in the decidua [67]. Aluvihure et 
al. (2004) [68] showed that the maternal population of 
CD4+CD25+ Tregs in mice is systemically expanded, rather 
than in the thymus, during pregnancy and this is independent 
of alloantigen. A subsequent study has since shown data to 
support that the expansion of CD4+CD25+ Tregs is driven 
by foetal alloantigen [69]. The conflicts in these results are 
possibly due to differences in the time periods examined. 

 One method by which Tregs are thought to mediate 
maternal tolerance of the foetus is through induction of the 
enzyme indoleamine 2,3-dioxygenase (IDO), expressed by a 
variety of cells including macrophages [70] and DCs [71]. This 
enzyme acts to deplete essential amino acid tryptophan and in 
doing so, prevents T cell attack of the developing foetus [72, 
reviewed by 73, 74]. IDO expression is upregulated in DCs and 
both peripheral and blood monocytes through Treg expression 
of CTLA-4 [75] possibly after exposure to foetal antigen. 

 The direct effects of the female sex and pregnancy-
associated hormones on Tregs is presently an understudied 
area. Most of the work carried out in this area has focused on 
the ability of oestrogen to potentiate the ability of Tregs to 
suppress immune function. Interestingly, it has been found 
that oestrogen increases the proportion of CD4+ T cells that 
are CD25+ as well as increases Foxp3 expression and 
enhances Treg suppression [76-78]. It remains to be seen 
what the effect of progesterone, in the presence or absence of 
oestrogen, has on the expansion and function of the Treg 
population and what signalling mechanisms are involved. 

2.3. B Cells and Antibodies 

 During pregnancy, humoral immunity predominates with 
an overall increase in total antibody production, however 
generation of new B cells is reduced. It has been shown that 
oestrogen causes a selective reduction in pre-B cells and IL-
7-responsive cells in the bone marrow [79], with subsequent 
studies demonstrating that oestrogen influences B 
lymphopoiesis by altering early, critical events [80]. It has 
been strongly suggested that the down regulation of B cell 
lymphopoiesis is due to the expression of Bcl2 [81]. This 
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antiapoptotic molecule is regulated by progesterone, which 
interacts directly with its promoter [82]. 

 Asymmetric antibodies are IgG molecules that possess a 
mannose-rich oligosaccharide in one arm of the Fab region 
[83]. The altered structure of these molecules therefore 
renders them ineffective at activating the effector functions 
typically associated with antibodies such as opsonisation for 
phagocytosis and complement fixation. It was first suggested 
by Malan Borel et al. (1991) [84] that these molecules 
function to protect the foetus by acting as blocking 
antibodies. It has since been recognised that higher levels of 
asymmetric antibodies exist in healthy pregnant women than 
in recurrent aborters [85]. This action has been attributed to 
the ability of progesterone to induce PIBF (Fig. 1). 
Asymmetric antibodes play a protective role during 
pregnancy by inactivating the effector mechanisms, which 
could attack the semiallogenic foetus [86, 87]. 

3. SIGNALLING OF THE FEMALE SEX HORMONES 

 In order for oestrogen and progesterone to exert their 
immunomodulatory functions, they must first bind to 
receptors. The receptors involved and signalling pathways 
induced upon hormone release is complex and not yet fully 
understood. 

3.1. Oestrogen Receptors 

 Oestrogen receptors exist in two isoforms, ER-  and ER-
, which are the products of two genes on different 

chromosomes. Oestrogen is able to function via genomic or 
non-genomic mechanisms [88, 89]. The genomic mechanism 
refers to the binding of oestrogen to nuclear (intracellular) 
receptors, which are ligand dependent transcription factors 
capable of regulating gene expression in a number of ways 
including direct DNA binding of homodimers / heterodimers 
of ER-  and ER- , or by binding to other transcription 
factors [90]. ERs modulate gene expression through 
transcription activation functions, AF-1 and AF-2, which 
bind coactivators or corepressors. As well as binding nuclear 
receptors, oestrogen can rapidly modulate cells by binding to 
membrane ERs [91], although oestrogen itself does not 
increase the expression of membrane ER-  [92]. 

 The presence of ERs on immune cells has been of great 
interest in recent times. By carrying out quantitative RT-
PCR, Phiel et al. (2005) [93] have shown that CD4+ T cells 
express a greater level of ER-  mRNA than ER-  mRNA, 
with CD8+ T cells expressing a similar, but low, level of 
mRNA for both ER-  and ER- . In addition it was shown 
that B cells express a higher level of ER-  mRNA than ER-  
mRNA. At the protein level, it was found that both CD4+ 
and CD8+ T cells possess 17 -oestradiol binding sites [94], 
B cells express nuclear ERs but not membrane ERs [95] and 
macrophages also express nuclear ERs [96, 97]. 

3.2. Progesterone Receptors 

 Progesterone has the ability to exert its functions through 
both the Progesterone receptor (PR) and the Glucocorticoid 
Receptor (GluR) [98]. The PR is an intracellular receptor 
that is a member of the nuclear receptor superfamily [99, 
100] and exists in two distinct isoforms, PR-A and PR-B, 
both of which are transcribed from a single gene, but 
regulated via distinct promoters [101-103]. The PR can be 

expressed constitutively, for example, in mice the PR is 
found in the smooth muscle cells of the uterus, uterine blood 
vessels and urinary bladder, to name a few [104]. However, 
PR expression can be upregulated by oestrogen, despite 
neither isoforms containing an oestrogen response element 
(ERE). Interestingly, Flötotto et al. (2004) [105] found that 
PR-B expression is stimulated by only ER-  by an AF-1 
dependent mechanism. 

 The PR can also mediate its biologic functions through 
either genomic or non-genomic mechanisms [106]. Classical 
genomic signalling involves the binding of progesterone to 
the receptor, inducing a conformational change in its 
structure, leading to the separation of a multi-protein 
chaperone complex. In doing so, receptors can form 
homodimers which are able to bind the progesterone 
response elements (PREs) within the promoter regions of 
target genes to modulate gene expression [100]. Recently, a 
great deal of effort has been made to understand the non-
genomic signalling mechanisms that mediate the rapid, 
membrane-initiated effects of progesterone [107] due to the 
potential for therapeutic modulation. 

 The presence of a classical progesterone receptor on 
immune cells is an area of much controversy. 
Immunohistological studies that neither PRs nor ERs were 
present on lymphocytes, macrophages or uterine NK cells 
[108]. In contrast, subsequent studies have demonstrated the 
existence of PRs and ERs in macrophages and NK cells by 
quantitative RT-PCR and immunohistochemistry [97, 109]. 
In addition, membrane PRs are also present in human T cells 
[110]. 

4. PREGNANCY AND AUTOIMMUNE DISEASE 

 Generally during pregnancy there is a substantial 
improvement in the symptoms. 

 of Th1-associated autoimmune disease. However, some 
autoimmuneconditions can cause risks and complications for 
both the pregnant woman and the foetus [111]. For example, 
in Graves’ disease anti-thyroid autoantibodies can result in 
miscarriages, premature births and intrauterine growth 
retardation for the foetus. The expectant mother can develop 
high blood pressure and heart complications [111]. 
Hashimoto’s thyroiditis is characterised by T cell 
autoreactivity against thyroid antigens, thus causing 
hypothyroidism and a decrease in the IQ of children born to 
mothers suffering from the disease [112]. 

 Hashimoto’s thyroiditis fluctuates during pregnancy. The 
autoimmune component ameliorates during the second half 
of gestation but is aggravated post-partum [113]. This may 
be due to the shift in T cell responses. In marked contrast, in 
the case of type 1 diabetes (IDDM) sufferers, symptoms are 
not alleviated during pregnancy and patients must be 
carefully monitored as IDDM can be induced by both Th1 
and Th2 events [114]. In clinical studies of patients affected 
by inflammatory bowel disease, the outcome of pregnancy is 
normal, although there is an increased risk of premature 
delivery or low birth weight [115]. Stillbirth, congenital 
abnormalities and preterm labour are often associated with 
inflammatory activity at conception, whereas absence of 
inflammation leads to a normal outcome [116, 117]. As a 
result patients are advised to conceive during remission. 
However, Crohn’s disease is exacerbated in the last trimester 
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and post-partum, and this is thought to be due to the decrease 
of endogenous corticosteroids after delivery [118]. In other 
inflammatory bowel conditions, such as ulcerative colitis, 
pregnancy appears to increase disease activity during the 
first trimester [119]. Usually, ulcerative colitis is also 
associated with low birth weight and preterm labour but 
there is evidence to illustrate that infants born to mothers 
with this condition may experience neurological sequelae 
[120]. 

 In Systemic Lupus Erythematosus (SLE) an association 
between activedisease at conception and danger to the foetus 
has been reported [121]. There has been much debate as to 
whether SLE is ameliorated or exacerbated during 
pregnancy, with studies providing evidence for both cases 
[122]. However, if flares of SLE occur, they are no more 
severe during pregnancy than before [123]. Recent studies 
highlight the increased danger to both mother and foetus of 
lupus nephritis at the time of conception. This is due to 
increased episodes of hypertension and a higher risk of 
preeclampsia [122]. In addition, the transplacental passage of 
antiphospholipid antibodies can result in neonatal lupus 
syndromes, with ensuing t higher risk of congenital heart 
problems and transient cutaneous lupus for the foetus [124]. 
The exacerbation of SLE is attributed to the presence of 
oestrogens, which favour humoral immunity, and prolactin, 
which has an effect on the T and B lymphocyte population 
[125, 126]. Since pregnancy in general results in a suppression 
of cell-mediated responses, humoral immunity is preserved 
and thus the production of autoantibodies is not affected. The 

symptoms of Rheumatoid Arthritis (RA) are generally 
alleviated during pregnancy. RA is characterised by a severe 
inflammation and destruction of the joints and by 
extraarticular manifestations, including vasculitis. These 
symptoms improve dramatically during early pregnancy and 
the patient can go into complete remission towards the end 
of gestation. Such amelioration is likely to be caused 
multiple factors including the major shift from a Th1 to a 
Th2/Treg environment, the presence of -2 pregnancy-
associated globulin (PAG) [122] and increase in sex 
hormones and serum cortisol, which suppress 
proinflammatory cytokines and favour IL-10 through the 
action of PIBF [53]. Exacerbation of RA can be seen in these 
patients 3-4 months postpartum, and prolactin may have a 
role in these flares [127, 128]. 

5. PREGNANCY AND INFECTION 

 During pregnancy many diseases are more severe and 
danger to the foetus and transplacental transmission may 
occur. Pregnant females in general are more susceptible to 
infection than non-pregnant females. Increase disease 
susceptibility and severity during pregnancy has been 
documented for a variety of diseases, including bacterial 
(Leprosy, Listeriosis) [129-131], viral (HIV, Influenza, 
Measles) [132-134] and parasitic (Malaria, Toxoplasmosis) [135, 
136]. It is the change in immune function during pregnancy 
that alters susceptibility and severity to these infections. For 
example, some studies have suggested a greater 
susceptibility to HIV in the presence of elevated 

Table 1. Immunological Response to Parasite Infections During Pregnancy 

 

Parasite Host Response to Infection Effect of Infection During Pregnancy References 

Leishmania major C57BL/6 mouse Th1 response: 

 IFN-  & IL-12 

If there are  levels of IFN-  induced by parasite this 
leads to implantation failure and resorption 

 IFN ,  IL-4, IL-5, IL-10, IgG1 

[154]  

 

[155] 

BALB/c mouse Th1 response: 

 IFN , IL-12 

 IL-4,  IFN , IL-12, TNF  [156-158] Neospora caninum 

Cattle Th1 response: 

 IFN-g production by NK cells 

Th1 response to control parasite multiplication leads to 
destruction of placental tissues. 

Infiltration of CD4+ T cells,  T cells & NK cells 

 IL-1 , IL-8, TNF  

 IL-6, TGF  by placental macrophages leading to 
inflammatory response in placenta 

[159, 160] 

Plasmodium 
falciparum 

Human  TNF , IFN  Infiltration of immune cells [161, 162] 

Dog  CD4+ & CD8+ T cells,  in 
IL-4, IL-5 & IgE production 

 susceptibility:  in IL-10 production during 
pregnancy, decrease in IFN-  production 

[163] Toxocara canis 

C57BL6/J 
mouse 

Th2 response: eosinophilia, i  in 
IgE production,  in CD4+ and 

CD8+ T cells 

 susceptibility:  in CD4+ T cells in early infection,  
in CD8+ T cells in late infection 

[164] 

Human  IFN-   susceptibility:  in IFN-  leading to increased 
parasitaemia 

 in activation of CD4+ T cells and monocytes 

[165] Trypanosoma cruzi 

BALB/c mouse  IFN-  and TNF-   susceptibility: Parasite invasion of deciduas resulting 
in foetal growth retardation and death 

[166] 

Toxoplasma gondii BALB/c  IFN , IL-12, CD8+ T cell 
activity 

 CD4+ T cells, CD8+ T cells 

Congenital transmission to foetus as parasite 
multiplication is not controlled 

[167] 
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concentrations of progesterone [137, 138]. An increase in 
progesterone levels can decrease vaginal epithelium 
thickness [139] and sex steroids can increase the expression 
of co-receptors CXCR4, CD4 and CCR5 important in viral 
invasion of the host cells expression [140]. In addition, 
severity of disease during pregnancy is also associated with 
physiological changes, such as increased heart rate, stroke 
volume, oxygen consumption and lung capacity [141]. Many 
studies, focusing on infections during pregnancy, have 

utilised parasitic model infections to understand the 
alteration of immune function during pregnancy and the 
danger to the foetus. 

5.1. Parasites and Pregnancy 

 A fine balance exists between host and parasite to ensure 
survival of both. The cytokine environment is often key in 
this process, and pregnancy can often lead to changes in the 
way this balance is maintained. Pregnancy is generally 

 

Fig. (2). Summary of protective type 1 immune response elicited by T. gondii infection. Upon infection of a host cell, such as the 

macrophage, IL-12 is released which induces the expansion of CD4+ Th1 cells as well as the effector mechanisms of NK cells. IFN-  release 

from Th1 cells, CD8+ T cells, NK cells further promotes the effector mechanisms of macrophages such as tryptophan degradation and NO 

release. Humoral immunity is involved by release of antibodies which can induce complement or opsonise tachyzoites to prevent further 

parasite dissemination. Release of parasite derived molecules such as cyclophilin, HSP70 and profilin induce the release of cytokines 

including IL-12 and TNF-  from DCs and neutrophils. [Ab=antibody, Ag = antigen]. 
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regarded as a Th2 phenomenon, due to the influence that the 
female sex hormones have on immune cells. Alteration of 
the cytokine environment as the immune system responds to 
the presence of infection often leads to detrimental 
consequences for both mother and foetus. On the other hand, 
adjustments of the cytokine profile induced by pregnancy 
can change the ability of an individual to control a parasite 
infection. A number of studies have been carried out to 
consider the effect that parasites have on the mother and 
foetus during pregnancy and also to consider the effect that 
pregnancy has on the ability to control parasite numbers, 
some of which have been summarised in Table 1. 

 One parasite, which has been extensively studied for its 
effects on immunity during pregnancy, is the protozoan 
Toxoplasma gondii. Female mice are more susceptible than 
males to T. gondii infection [142], and this has been 
attributed to the effect of the female sex hormones [15]. In 
addition, this parasite can be congenitally transmitted if the 
mother is infected for the first time during pregnancy, with 
the trimester at which infection occurs determining whether 
the foetus is aborted or survives to term, but possessing 
foetal abnormalities [143]. As summarised in Fig. (2), 
infection with T. gondii is characterised by induction of a 
Th1 type immune response, with production of IFN-  and 
CD8+ T cell activity being crucial for control of the parasite 
[144-147]. IFN-  production, as part of a Th1 immune 
response, is associated with abortion and so the immune 
response to the parasite can have detrimental consequences 
for the foetus. On the other hand, the Th2 environment 
conducive to pregnancy favours the multiplication and 
maintenance of the parasite. Moreover, T. gondii-infected 
IFN-  deficient pregnant mice are less likely to abort the 
foetus, but exhibit high numbers of parasite within the uterus 
and placenta [148]. 

 Malaria infections have presented the world with a great 
epidemiological problem in recent times. Four species 
(Plasmodium falciparum, P. malariae, P. ovale and P. vivax) 
cause malaria in humans, with P. falciparum infection being 
especially problematic during pregnancy. The prevalence of 
maternal malaria infection in Africa is approximated at 25% 
[149] and congenital transmission to the foetus estimated at 
33% [136], therefore understanding the immune response to 
malaria infection is important with regard to transmission of 
infection and possible chemotherapeutics during pregnancy. 
As with T. gondii infection, malaria induces a strong Th1 
type response in the mother, resulting in implantation failure 
and abortion of the foetus [150]. Much of the pathology is 
due to the ability of the parasite to reside within red blood 
cells in the placenta, mediated by binding of the parasite to 
chondriotin sulphate A and hyalaronic acid receptors on 
placental endothelial cells [151]. 

 A recent study has considered the effects of the female 
sex hormones on P. chabaudi infection in C57BL/6 mice and 
found that administration of oestrogen alone or in 
combination with progesterone reduced infection-induced 
weight loss without actually effecting levels of parasitaemia 
[152]. This data suggested that oestrogens exhibit a 
protective effect for the mother by increasing levels of IFN-  
and IL-10, however this study did not consider pregnancy 
outcomes. The stress hormone cortisol has been found to be 
increased in P. falciparum-infected pregnant women 

compared with non-infected pregnant women [153]. At the 
time of delivery, cortisol concentrations were approximately 
2.5 times higher than in non-pregnant women. It could be 
suggested that the parasite induces additional cortisol 
production as a means of dampening immune cell function. 

6. CONCLUDING REMARKS 

 The female sex and pregnancy associated hormones have 
a wide range of effects on the cells of the immune system to 
allow the successful continuation of pregnancy by 
preventing rejection of the foetus. The modulation of the 
action of these cells often has implications for other aspects 
of immunity, such as altering the ability to deal with 
infection or autoimmune diseases. Much remains to be 
learned about the way in which cells and molecules can 
interact and be influenced. 
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