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Abstract: Viral infection is detected by the innate immune system which mounts a rapid semi-selective defence involving 

inflammation and production of type 1 interferons. Several sensors, both cell surface and intracellular, exist to detect 

different types of viral motifs. Double-stranded RNA viruses and dsRNA replication intermediates are detected by toll-

like receptor 3 (TLR3) as well as by retinoid-inducible gene 1 (RIG-I) like receptors. Binding of dsRNA or its synthetic 

analogue poly I:C to TLR3 recruits the adaptor protein TRIF and stimulates distinct pathways leading to activation of 

interferon regulatory factor (IRF) and NF- B. Here, we review the signalling cascades initiated by TLR3 and the 

modulation of these pathways. 
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TLR3: SENSING OF VIRAL INFECTION 

 Human cells are equipped with a range of pattern-
recognition receptors (PRRs) which recognise microbial 
pathogen-associated molecular patterns (PAMPs), and mount 
innate immune responses following infection. Anti-viral 
sensors can be broadly classified into two groups; toll-like 
receptor family members and retinoid-inducible gene 1 
(RIG-I) like receptors (RLRs). TLR3 is activated by double 
stranded (ds) RNA [1] whilst TLR7 and TLR8 recognise 
single stranded RNA [2, 3]. RLRs are located in the 
cytoplasm and include RIG-I and MDA5, both of which 
recognise dsRNA [4]. DNA dependent activator of IFN-
regulatory factors (DAI), a cytosolic DNA sensor, also 
recognises B and Z formation DNA from a viariety of 
microbial sources [5]. Recognition of a viral PAMP by its 
cognate PRR activates an intracellular signalling cascade 
culminating in the production of type 1 interferons (IFN  
and IFN ) and pro-inflammatory cytokines. Type 1 
interferon in turn activates interferon stimulated genes 
(ISGs) and production of anti-viral proteins, thus amplifying 
the anti-viral immune response. 

 TLR3, when triggered by dsRNA, can activate several 
signalling cascades including those leading to the activation 
and nuclear translocation of the transcription factors IRF3 
and NF- B, upregulating expression of interferon-  and pro-
inflammatory cytokines (Fig. 1). These pathways can be 
intercepted and modulated at several steps, causing the 
balance of signalling to shift between the anti-viral and pro-
inflammatory response. This review will discuss the 
signalling pathways induced by TLR3 activation and how 
these pathways can be modulated to the benefit or detriment 
of viral disease. 
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TLR3 LIGANDS 

 The ligand for TLR3 was identified as dsRNA relatively 
recently in 2001 [1, 6]. Eight families of dsRNA viruses 
exist including the rotaviruses which are implicated in infant 
mortality [7]. A further source of dsRNA is derived from the 
replication of other RNA and DNA viruses which produce 
dsRNA as a by-product of replication [8]. TLR3 can also 
potentially be activated by endogenous host single stranded 
mRNA though the presence of secondary structures, such as 
hairpins, which have dsRNA regions [9]. However, a later 
study from this group reported that common mammalian 
modifications of RNA such as methylation reduced 
signalling through TLR3 compared to minimally modified 
viral nucleic acids [10]. RNA released from necrotic cells in 
rheumatoid arthritis synovial fluid activates TLR3 on 
synovial fibroblasts [11]. Furthermore co-culture of 
macrophages from TLR3 -/- mice with necrotic neutrophils 
resulted in abrogated production of pro-inflammatory 
cytokines compared to wild type macrophages. Pre-treatment 
of the necrotic neutrophils with RNase attenuated cytokine 
production from WT macrophages [12]. Small interfering 
RNA (siRNA) is an increasingly popular method for 
silencing gene expression but can also result in IFN release 
via the TLR3 pathway, depending on cell type and duplex 
length [13]. Polyinosinic:polycytidylic acid (poly I:C) is a 
synthetic dsRNA often used in studies investigating TLR3 
function and signalling. The unmodified nature of poly I:C is 
further evidence that TLR3 recognises the RNA duplex 
rather than any modifications or other structures of dsRNA 
[14]. 

STRUCTURE OF TLR3 

 The structure of TLR3 was simultaneously elucidated by 
two separate groups who both published their findings in 
2005. The basic structure of TLR3 is similar to the rest of the 
TLR family, comprising an extracellular ligand binding 
domain, a transmembrane domain and a cytoplasmic 
Toll/Interleukin-1 receptor (TIR) domain. The extracellular  
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Fig. (1). TLR3 signalling pathways. dsRNA binds to TLR3 in 

endosomes activating TRIF. TLR4 can also activate TRIF via the 

adaptor protein TRAM. Type I IFN pathway: TBK1 interacts with 

TRIF via NAP1 and TRAF3 and the signal is transduced to IKKi 

leading to phophorylation of IRF3 (and IRF7, not shown). PI3K, 

which is recruited to phosphotyrosine residues on TLR3, is also 

required for complete IRF activation. IRFs dimerise then 

translocate to the nucleus where they bind to DNA and transcactive 

type 1 IFN genes expression in conjunction with the co-activator 

CBP/p300. Proinflammatory cytokine pathway: TLR3 activates 

NFkB by a TRAF-6 mediated interaction with TRIF involving the 

TAK1/TAB1/TAB2/TAB3 complex which activates TAK1 causing 

it to phosphorylate and activate IKK. This phosphorylates IkB and 

targets it for degradation unmasking nuclear localisation sequences 

on NFkB. Signalling from TRIF via RIP-1 is required for full 

activation of NFkB and transcriptional induction of target genes. 

domain of TLR3 has 23 leucine rich repeats (LRRs) 
arranged in a horseshoe solenoid structure. The concave 
surface of the horseshoe is heavily glycosylated with many 
negatively charged residues and is therefore not a candidate 
location for nucleic acid binding [15, 16]. Glycosylation is 
however required for full function of TLR3 signalling [17]. 
Amino acids in LRR20 on the convex surface of TLR3 were 
later found to be essential for ligand binding [18]. Binding of 
dsRNA to the ectodomain was found to be dependent on 

acidic pH [19]. It has been proposed that upon dsRNA 
binding to TLR3, a second TLR3 molecule recognises the 
opposite strand of the dsRNA duplex [18], implicating 
formation of a TLR3 homodimer in dsRNA signalling. 
Leonard and colleagues later demonstrated that dsRNA 
binding induces TLR3 multimerisation and that the number 
of participant monomers increases with the length of the 
dsRNA duplex [20]. 

DISTRIBUTION AND EXPRESSION OF TLR3 

 TLR3 is expressed in a wide variety of cells including 
epithelial cells [21], fibroblasts [6], microglia [22], 
astrocytes [23], mast cells [24, 25], eosinophils [26], 
endothelial cells [27] and dendritic cells [28]. In contrast 
TLR3 expression is minimal in T cells [29, 30] and entirely 
absent in neutrophils which use alternative sensors to detect 
dsRNA [31, 32]. TLR3 expression is barely detectable [28] 
to absent [33] in monocytes but expression was markedly 
increased following cytokine-induced maturation of 
monocytes to immature dendritic cells (iDC). Muzio and 
colleagues detected TLR3 in mature DCs but not iDC [33]. 
In contrast, other studies found that expression of TLR3 is 
lost during progression of DCs to the mature form [28, 34]. 
TLR3 induced DC maturation is believed to bridge the 
innate and adaptive immune systems and readers are directed 
to the review by Salio and colleagues for more information 
[35]. TLR3 mRNA was not detected in T-lymphocytes, B 
cells or NK cells [33]. Sha et al. reported TLR3 to be the 
most abundant TLR expressed in Beas-2b airway epithelial 
cells. In agreement with this, poly I:C was found to be the 
most effective TLR agonist at upregulating gene expression 
in micro-arrays, with 7-fold upregulation of IL-8 and IL-6 
expression observed [36]. 

 TLR3 expression is upregulated by poly I:C [36-38] or 
viral infection e.g. RSV [39, 40] and H. influenza [21, 41]. 
TLR3 expression in human monocytes and monocyte-
derived macrophages is inducible by treatment with IFN . 
The human promoter for TLR3 contains interferon response 
elements (IREs) and a STAT element; the cognate 
transcription factors are suggested to be IRF1 and STAT1 
[34]. Indeed dominant-negative expression of STAT1 can 
abolish poly I:C induced TLR3 expression in murine cells 
[42]. LPS also upregulates TLR3 expression via the 
autocrine action of LPS-induced IFN  secretion. LPS does 
not however upregulate TLR3 expression in human cells 
[34]. 

INTRACELLULAR DISTRIBUTION OF TLR3 

 TLR3 is mostly thought of as an intracellular receptor, 
resident on the plasma membranes of endosomal vesicles. 
Indeed in various subsets of dendritic cells and macrophages 
TLR3 is exclusively intracellular [43-45]. Other cell types 
however can display a proportion or all of their TLR3 on the 
cell membrane. Cell surface TLR3 has been demonstrated in 
fibroblasts [6], astrocytes [23] and epithelial cells [40, 46, 
47]. A neutralising monocloncal antibody for TLR3 prevents 
dsRNA signalling in fibroblasts where TLR3 is on the cell 
surface [6] but not in dendritic cells where TLR3 is 
intracellular [45]. Studies on the localisation of TLR3 in 
epithelial cells have been conflicting. Several studies have 
concluded that TLR3 is located intracellularly in airway [21, 
41] and endometrial epithelial cells [48]. As well as 
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upregulating TLR3 expression, viral infection of epithelial 
cells appears to induce localisation of TLR3 to the cell 
surface [40, 46] where it serves to sensitise or “prime” the 
cells to better recognise and respond to subsequent viral 
challenge [40]. A short 26 amino acid “linker” domain 
between the cytoplasmic TIR domain and the 
transmembrane portion of TLR3 is necessary for 
intracellular vesicular localisation of TLR3. Truncated 
versions of TLR3 lacking this region localise to the cell 
surface [49]. UNC93B is a membrane protein normally 
resident in the endoplasmic reticulum (ER), which is 
reported to be involved in trafficking of TLR7 and 9 from 
the ER to the endolysosome. Although this wasn’t 
demonstrated for TLR3 [50], Brinkmann and colleagues 
demonstrated that UNC93B interacts with TLR3 via its 
transmembrane domain and that point mutation of UNC93b 
in mice abrogates TLR3, 7 and 9 signalling, leaving the mice 
extremely susceptible to viral infection [51]. 

 TLR3 and TLR7 localise in the same intracellular 
compartments often found adjacent to phagosomes 
containing apoptotic bodies, suggesting that TLR3 and 7 can 
be triggered by nucleic acids from apoptotic cells [52]. 

TLR DEFICIENCY: FUNCTIONAL ROLE FOR TLR3 

 The exact role that TLR3 plays during viral infection 
remains controversial with conflicting reports implicating 
TLR3 in both disease pathogenesis and anti-viral innate 
immunity. 

 TLR3 deficiency can be detrimental to the outcome of 
viral infection, demonstrating the importance of TLR3 in the 
anti-viral host defence. When infected with RSV, TLR3 -/- 
mice and WT mice were shown to have the same amount of 
viral growth. TLR3 -/- mice however, had an elevated 
pathological response to infection including increased mucus 
production in the airways [53]. TLR3 deficient mice also 
exhibit increased mortality and viral titre in the heart 
compared to WT following encephalomyocarditis virus 
infection with an associated decrease in the pro-
inflammatory cytokine profile [54]. Infection with herpes 
simplex encephalitis virus (HSV) in several children was 
reported to be associated with point mutations in TLR3 
suggesting a non-redundant role for TLR3 in defence of the 
central nervous system against HSV infection [55]. 
Deficiency of UNC93b, a TLR3 associated protein discussed 
in the previous section, was also associated with HSV 
infection in children [56]. The importance of TLR3 
signalling was also demonstrated by knockout of its adaptor 
protein Toll/IL-1R domain-containing adaptor inducing IFN-
beta (TRIF). Following infection with mouse 
cytomegalovirus, mice homozygous for mutations in TRIF 
did not produce type 1 IFN and exhibited higher splenic viral 
titres. Additionally LPS and poly I:C challenge of TRIF -/- 
macrophages failed to induce phosphorylation or 
dimerisation of IRF3 [57, 58]. A further study did not 
observe any changes in mortality between TLR3 -/- mice and 
wild type mice infected with mouse cytomegalovirus 
(MCMV) infection despite higher splenic viral titres in  
TLR3 -/- mice [59]. Upon infection with coxsackievirus B4 
TLR3 -/- mice displayed higher morbidity & mortality 
[60,61] as well as increased (100-1000 fold) viral titres and 
significantly reduced cytokines at day 4. Transfer of WT 

macrophages but not DCs to TLR3 -/- mice significantly 
extended survival post infection, suggesting that the antiviral 
role of TLR3 in this infection was cell specific [60]. TRIF 
deficient mice also had higher viral titres [61]. 

 Counter-intuitively, TLR3 deficiency can also positively 
affect the outcome of viral infection, particularly by 
dampening the pro-inflammatory response. TLR3 -/- mice 
exhibited less viral load, decreased morbidity and mortality 
compared to wild type mice in response to infection with the 
DNA vaccinia virus [62]. TLR3 deletion also appears to 
protect against infection with Punta Toro virus (PTV). TLR3 
-/- mice infected with PTV display similar viral loads but 
less inflammatory mediators (IL-6 in particular), increased 
survival, and reduced liver disease compared to WT [63]. 
TLR3 deficiency also appears to protect against influenza A, 
with TLR3 -/- mice exhibiting increased viral load upon 
infection with influenza A compared to WT; they also had 
less inflammation, increased survival, and less CD8+ T 
lymphocytes in the bronchoalveolar lavage fluid [64]. The 
severity of rabies virus, which exclusively infects neuronal 
cells is also reduced when TLR3 is deficient, with increased 
survival of TLR3 -/- mice following infection. Following 
rabies infection, TLR3 localises with viral proteins to form 
perinuclear protein aggregates known as Negri bodies which 
contribute towards the pathogenesis of the disease [65]. 

 The consequences of TLR3 deficiency in mice infected 
with West Nile virus (WNV), a mosquito-borne flavivirus, 
are controversial. Peripheral infection with WNV breaks 
down the blood brain barrier, leading to brain infection and 
lethal encephalitis. TLR3 -/- mice display less viral load in 
the brain, decreased cytokine load in the periphery and better 
survival compared to wild type mice [66]. Indeed the 
deleterious contribution of TLR3 to the pathogenesis of 
WNV infection was further demonstrated by delineation of 
the molecular events behind the observation that elderly 
people (average age 72.3 ± 8.8 years) have a more severe 
disease progression than younger patients (age 20 - 36 
years). WNV infection of macrophages from young people 
reduces expression of TLR3 via a STAT1 dependent 
mechanism. TLR3 expression in macrophages from older 
people was elevated and the subsequent elevation of 
inflammatory cytokines is thought to mediate permeability 
of the blood brain barrier and progression of encephalitis 
[67]. Conversely, another group demonstrated that mouse 
mortality following WNV infection is increased in the 
absence of TLR3. The authors suggest that the culture 
method of the virus as well as the delivery route explain the 
difference in results [68]. 

 Another function of TLR3 is to act as an endogenous 
sensor for host dsRNA released from necrotic cells. In 
mouse models of sepsis, peritonitis and gut injury, TLR3 
deficiency protected against sustained deleterious 
inflammation, an effect mediated by the failure of TLR3 -/- 
macrophages to recognise dsRNA from necrotic neutrophils 
[12]. TLR3 is also required for normal inflammation of skin 
keratinocytes following exposure to necrotic material [69]. 

TLR3 SIGNALLING: TRIF 

 TLRs transduce signalling via the intracellular toll/IL-1 
receptor (TIR) domain by recruitment of adaptor proteins 
such as MyD88, TRAM, TIRAP or TRIF. TIR-domain 
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containing adaptor inducing interferon-  (TRIF) (also called 
TICAM-1) is the only adaptor protein available for use by 
TLR3 due to the presence of alanine in position 795 in the 
protruding BB loop of the TIR domain rather than the 
proline conserved amongst other TLRs [70]. TRIF comprises 
a TIR domain flanked by proline rich C and N terminal 
domains. In resting cells TRIF does not co-localise with 
TLR3 and is found diffusely throughout the cytosol of the 
cell. dsRNA binding to TLR3 transiently recruits TRIF to 
localise with TLR3 at the membrane before dissociating to 
form cytosolic speckle structure to which NAK-associated 
protein 1 (NAP1) and receptor interacting protein (RIP)-1 
also localised [71]. 

 TRIF interacts with TLR3 via their respective TIR 
domains. TRIF can also transduce intracellular signals 
leading to type I interferon production by TLR4. Following 
TLR3 or TLR4 activation, TRIF deficient mice don’t 
produce IFN and fail to active IRF3 [72]. Interestingly TRIF 
expression is upregulated by an NF- B dependent pathway 
[73]. 

TLR3 Signalling to Type 1 Interferon 

 dsRNA induces the production of type 1 interferon by 
signalling along a TRIF/TBK1/IRF3 pathway, culminating 
in the phosphorylation and nuclear localisation of IRFs. 
TANK-binding kinase 1 (TBK1) binds to TRIF with 
preference for the phosphorylated form of TRIF [74] and 
knockdown of TBK1 by siRNA can block IRF3 activation 
[75]. This interaction is thought to be mediated by NAK 
associated protein 1 (NAP1) [76]. TRAF3 has also been 
proposed as a link molecule bridging the interaction between 
TRIF and TBK1 [77, 78]. I B kinase  (IKK , also known as 
IKK inducible [IKKi]) and TBK1 have been identified as the 
kinases responsible for phorphorylation of IRF3 and IRF7 
[79]. Additional phosphorylation of IRF3/7 by phospho-
inositide 3-kinase (PI3K), which is recruited to phospho-
tyrosine residues on TLR3, is also required for complete IRF 
activation. Although IRF3 can translocate to the nucleus in 
the absence of PI3K activity, full phosphorylation of IRF3 
and full activity as a transcription factor requires PI3K [80]. 

 IRFs dimerise via a domain in the C-terminal region 
called the IRF association domain (IAD). Phosphorylation of 
IRF3 by the I K /TBK1 complex and by PI3K occurs in a 
cluster of serine/threonine residues in the IAD domain and 
removes the autoinhibitory barrier to dimerisation, allowing 
full activation of IRF. IRF dimers then translocate to the 
nucleus where they bind to DNA via the N-terminal DNA 
binding domain with the help of the co-activators CBP/p300 
[81]. 

TLR3 SIGNALLING PATHWAYS NF- B 

 TLR3 activates NF- B by two distinct pathways; a 
TRAF6 mediated pathway and a RIP-1 mediated pathway. 

 Following activation of TRIF, TRAF6 associates with 
N-terminal motifs in TRIF. Prevention of this association 
reduced NF- B activity but not IFR3 activity, providing 
evidence of divergence of TRIF signalling [74, 82]. 
Recruitment of TRAF6 to TRIF and the subsequent TRAF6 
oligomerisation activates its E3 ubuiquitin ligase activity, 
resulting in self-ubiquitination of TRAF6 which facilitates 
the recruitment of a TAK1/TAB1/TAB2/TAB3 complex 

[83,84]. Transforming growth factor-beta-activated kinase 1 
(TAK1) becomes activated by autophosphorylation of amino 
acids in its activation loop which allows TAK1 to 
phosphorylate and activate the IKK complex. Active IKK 
phosphorylates inhibitor of kB (I B) which is then 
ubiquitinated and degraded, releasing NF- B dimers to 
translocate into the nucleus and initiate transcription of target 
genes. 

 TLR3 can also activate NF- B via the RIP homotypic 
interaction motif (RHIM) domain in the C-terminal region of 
TRIF which can bind both RIP1 and RIP3. RIP1 activity is 
required for full activation of NF- B [85-87] but RIP3 was 
actually found to downregulate signalling by competing with 
RIP1 for binding to TRIF [87]. The importance of Peli1, an 
E3 ubiquitin ligase, has recently been shown in TRIF 
mediated signalling with the observation that Peli1 
deficiency abrogates TRIF-induced production of pro-
inflammatory mediators, an effect mediated by the 
ubiquitination of RIP1 [88]. 

 There is a growing evidence that TLR3 stimulation can 
activate the mitogen activated protein kinase cascade 
(MAPK) via the intermediate TAK1. IL-1 stimulated 
activation of TAK1 resulted in downstream activation of 
MKK6 and the c-Jun N-terminal kinase (JNK) pathway [84, 
89, 90]. 

TLR3 AND APOPTOSIS SIGNALLING 

 Another unique feature of TRIF is that it is the only TLR 
adaptor protein to be strongly involved in apoptotic 
signalling [91], indeed Han et al. showed that HEK293T 
cells undergo significantly more apoptosis when TRIF was 
overexpressed [92]. The RIP homotypic interaction motif 
(RHIM) domain in the C-terminal region is necessary for 
this signalling and it has also been shown that mutations in 
the TIR domain also block apoptosis [91]. TRIF binding of 
RIP1 and RIP3 via the RHIM domain induces downstream 
signalling through Fas-Associated protein with Death 
Domain (FADD) and caspase 8 [91, 92]. Interestingly TRIF 
can be cleaved by caspases resulting in decreased NF- B and 
IRF activation [93]. The RHIM domain is also necessary for 
TRIF-induced maturation of the cytokine IL-1  which has 
been demonstrated to occur via a TLR3/4 – TRIF – caspase-
8 dependent mechanism [94]. Weber and colleagues also 
demonstrated the necessity of caspase-8 in poly I:C induced 
TRIF dependent apoptosis in HaCaT keratinocytes [95]. 
Given the pro-apoptotic nature of TRIF signalling, it has 
been suggested that TLR3 agonists may be useful therapeutic 
agents in cancer to induce apoptosis [96]. 

TRIF AND TLR4 SIGNALLING 

 TLR4 mediated production of type 1 interferon is 
dependent on the presence of TRIF but a direct interaction 
between TRIF and TLR4 has not been found. Rather TLR4 
utilises another adaptor protein TRAM (also called TICAM-
2) to link with the TRIF dependent pathway [70]. A recent 
paper showed that LPS stimulation of TLR4 recruited TRIF 
to the plasma membrane via interaction with TRAM. The 
entire complex then translocated to the endosome to 
complete signalling [97]. This is further supported by the 
report from Kagan and colleagues who propose a two step 
sequence of events following TLR4 stimulation. First the 
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signal is transduced through the MyD88 pathway, after 
which TLR4 is endocytosed and proceeds to signal through 
the TRAM-TRIF pathway in the endosome [98]. 

MODULATION OF TLR3 SIGNALLING PATHWAYS 

 Inhibition of TLR3 signalling has been reported to occur 
via a number of mechanisms including targeting of TRIF, 
downstream mediators and other as yet unidentified factors 
(Table 1). 

Inhibition of TRIF signalling 

 Targeted inhibition of TRIF blocks all downstream 
signalling including activation of NF- B and IRF3. Hepatitis 
C viral protease NS3/4a cleaves TRIF and the RLH adaptor 
interferon-beta promoter stimulator (IPS)-1, thereby 
specifically targeting and evading TLR3- and TLR4- as well 
as RLH-signalling [99]. In addition to inhibition of TLR3 by 
caspase cleavage [93], RIP3 has been shown to 
downregulate signalling by competing with RIP1 for binding 
to TRIF [87]. TRIF mediated activation of NF- B and IRF is 
also repressed by PIASy, a protein inhibitor of activated 
STAT (PIAS) [100] but the exact mechanism is as yet 
unclear. Sterile alpha and TIR motif –containing protein 
(SARM), another TIR domain interacting adaptor molecule, 
inhibits TLR3 and TLR4 signalling downstream of TRIF and 
was demonstrated to interact with TRIF by both co-
immunoprecipitation and yeast two hybrid experiments 
[101]. 

 TRIF signalling is also regulated by A20, a TNF  
inducible protein with deubiquitinase activity which inhibits 
NF- B activation in response to several stimuli. Wang and 
colleagues demonstrated that A20 associates with TRIF and 
inhibits activation of NF- B, the IFN  promoter and ISRE 
following TLR3 and TRIF activation with poly I:C and 
Sendai virus. A20 did not inhibit activation of NF- B, ISRE 
or IFN  promoter when signalling was induced by 
components downstream of TRIF such as TBK1 and IKK 
proteins [102]. In contrast, a later study showed that A20 
associates with TBK1 and the IRF3 kinases IKKi/IKK , 
reduces phosphorylation and therefore activation of IRF3 
[103]. 

Modulation of Signalling Downstream of TRIF 

 A recent paper by An et al. demonstrated that Src-
homology 2 -domain-containing tyrosine phosphatase 
(SHP)-1 inhibits production of pro-inflammatory cytokines 
whilst concurrently augmenting production of type 1 
interferons by binding and inactivating Interleukin-1 
receptor-associated kinase (IRAK)1 [104]. The signalling 
cascade leading to the production of type 1 interferon can 
also be interrupted by the protein tyrosine phosphatase SHP-
2 which is ubiquitously expressed and is present in the 
cytoplasm of all cells. Mutations in SHP-2 lead to Noonan 
syndrome which is characterised by short stature, facial 
dysmorphia and increased risk of heart defects and leukemia 
[105]. TLR3-induced signalling culminates in serine/threo- 
nine phosphorylation of IRF which is required for its 
dimerisation and nuclear translocation. Despite this, tyrosine 
phosphatases were found to block dsRNA induced signalling 
[106]. SHP-2 knockdown in macrophages allows greater 
IFN  production in response to LPS and poly I:C and SHP-2 
over-expression can inhibit activation of IRF3. Further 

investigation revealed that SHP-2 actually interacts with 
TBK1 and blocks its kinase activity, thus attenuating 
signalling to IRF3 [107]. Another molecule, the inositol 5’ 
phosphatase (SHIP-1), also interacts with TBK1, negatively 
regulating production of IFN  following TLR3 stimulation 
[108]. 

 Interestingly SHP-2 appears to be necessary for complete 
activation of NF- B [109-111]. SHP-2 deficient cells display 
impaired phosphorylation of I B and NF- B activation 
following IL-1/TNF stimulation but restoration of SHP-2 
into cells can restore NF- B activation and IL-6 production. 
SHP-2 can be co-immunoprecipitated in a complex with I K 
and was therefore deemed to be functionally necessary for 
efficient phosphorylation of I B and subsequent activation 
of NF- B [109]. The involvement of SHP-2 in the IRF and 
NF- B pathways appears to be modulated by signal 
regulatory protein (SIRP ), a transmembrane protein which 
acts as a substrate and adaptor protein for SHP-1 and SHP-2. 
The intracellular cytoplasmic domain has two ITIM motifs 
which become tyrosine phosphorylated upon activation. 
Phosphorylated SIRP  then recruits SHP-1 and SHP-2 
which dephosphorylate members of the signalling cascade, 
negatively modulating signalling [112] SIRP  knockdown 
increases LPS-induced association of SHP-2 with I K, 
resulting in prolonged activation of NF- B [111]. 
Overexpression of SIRP  can suppress TNF  induced SHP-2 
mediated stimulation of NF- B [110]. TRADD, another 
component of the TLR3 pathway can affect viral defence. 
TRADD -/- mice displayed a survival advantage following 
LPS or poly I:C challenge compared to WT. Poly I:C and 
LPS induced activation of the TRIF dependent pathway was 
impaired in TRADD-/- mice by measurement of cytokine 
secretion. These authors also demonstrated a cell specific 
role for TRADD with fibroblasts from TRADD -/- mice 
having impaired NF- B and MAPK signalling; this was not 
observed in bone marrow macrophages [113]. 

 Vaccina virus is a DNA poxvirus used to vaccinate 
against smallpox and several of vaccinia’s viral proteins 
have been demonstrated to modulate the intracellular 
signalling pathway of TLR3. The vaccinia proteins A46R 
and A52R inhibit NE and IL-1 induced NF- B activation 
and IL-8 secretion in airway epithelial cells [114]. A46R also 
inhibits NF- B activation following stimulation with 
agonists of TLRs 1, 2, 4, 5, 6, 7 and 9 possibly by virtue of 
its association with the adaptor protein MyD88. Interaction 
between A46R and TRIF was also demonstrated by co-
immunoprecipitation and GST-pulldown. Overexpression of 
A46R blocked IRF3 activation following poly I:C 
stimulation. A52R was found to inhibit poly I:C induced NF-

B activation but not IRF3 activation. This is mediated by 
interaction with TRAF6 and IRAK-2 [115]. Suppressor of 
I E  (SIKE) inhibits the I E /TBK1 complex under resting 
condition but dissociates from TBK1 following viral 
challenge allowing antiviral signalling to proceed [116]. 

Uncharacterised Inhibition of TLR3 Signalling 

 Other mechanisms of TLR3 inhibition include 
modulation by viral proteins as well as endogenous factors. 
Macrophages from CD14 -/- mice show impaired responses 
to poly I:C suggesting a role for CD14 in TLR3 signalling. 
Lee et al. found that TLR3 and CD14 can co-localise in 
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lysosomes [44]. Guggul is a plant steroid used in traditional 
medicines for the treatment of inflammatory diseases 
including arthritis and cardiovascular disease. Guggul 
inhibits TRIF-induced NF- B and IRF3 activation [117]. 
Suppressor of cytokine signalling (SOCS)1 is a target gene 
of poly I:C stimulation. Expression of SOCS1 can inhibit 
poly I:C induced STAT1 phosphorylation activity. This may 
represent an autocrine regulatory mechanism to control 
TLR3 signalling [42]. West Nile virus non structural protein 
1 (NS1) inhibited activation and nuclear translocation of 
both NF- B and IRF3 in response to poly I:C stimulation of 
HeLa cells [118]. 

ALTERNATIVE SENSORS FOR dsRNA 

 The fact that poly I:C can still induce interferon 
responses in the absence of TLR3 or TRIF [72] suggests that 
there are alternative mechanisms that sense intracellular 
dsRNA. The RIG-I-like receptors (RLRs) RIG-I and MDA5 
recognise specific viruses. RIG-I was demonstrated to 
enhance poly I:C induced interferon production [119, 120], 
suggesting that it may have the ability to sense dsRNA. 
Further work has since elucidated that RIG-I recognises 
several ssRNA viruses such as influenza and Japanese 
encephalitis virus [4]. Another RLR related to RIG-I called 
MDA5 recognises picornaviruses [4] and poly I:C [121]. 

 RIG-I and MDA5 have several domains including two 
caspase recruitment domains (CARD) at the N-terminus, a 
middle DExD/H RNA helicase domain and a C-terminal 
repressor domain. RLRs bind dsRNA via their helicase 
domain and stimulate downstream signalling through the 
CARD domain. 

 RIG-I is thought to discriminate between endogeneous 
host RNA and microbial RNA by specifically recognising 
the uncapped 5’ triphosphorylation characteristic of certain 
viruses but not host RNA [122-124], but as discussed in 
more detail in a recent review RIG-I can be activated by a 
range of RNA ligands with and without a 5’ triphosphate 
group [125]. RLR signalling is mediated by the adaptor 
protein IFN  promoter stimulator 1 (IPS-1) (also known as 
mitochondrial antiviral signalling [MAVS]) which binds to 
activated RLR though interaction of the IPS-1 CARD 

domain with the RLR CARD domain. IPS-1 recruits TRAF3 
[77, 78] which in turn recruits TBK1 and I Ki. From this 
point the signalling cascade is similar to that of TRIF 
mediated signalling. TBK1/I Ki phosphorylate IRF3/7 
which dimerises, translocates to the nucleus and stimulates 
production of interferon related genes [75]. Viral evasion of 
RIG-I signalling can be modulated by the influenza A non-
structural protein 1 (NS1) [126]. RIG-I can also be degraded 
by viral proteinases during picornavirus infection, 
attenuating the antiviral defence [127]. Interestingly, Manuse 
and Parks reported that TLR3 activation was associated with 
increased expression of RIG-I suggesting the possibility of 
cross-talk between the two modes of dsRNA sensing [128]. 
Overexpression of RIG-I has been implicated in the 
pathogenesis of lupus nephritis with the finding that 
knockdown of RIG-I prevents activation of IRF7 which is 
involved in downstream inflammatory responses [129]. 

 Although RLR detection of dsRNA is utilised in all cells 
(except plasmacytoid dendritic cells), it is the only sensor for 
dsRNA in neutrophils which lack expression of TLR3 [31]. 
Challenge of human neutrophils with intracellular poly I:C 
results in increased expression of type 1 interferons and 
proinflammatory cytokines though antiviral signalling 
mediated by both RIG-I and MDA. Both are strongly 
expressed in the neutrophil [32]. 

 RNA activated protein kinase (PKR) is a serine/threonine 
kinase which has two binding domains for dsRNA. Upon 
activation, PKR homodimerises and undergoes 
autophosphorylation, and in turn phosphorylates a protein 
called eukaryotic initiation factor 2 (eIF2 ) which is 
involved in translation of eukaryote mRNA. eIF2  activity is 
impaired by phosphorylation thereby inhibiting protein 
synthesis [130]. 

CONCLUSIONS 

 TLR3 is the only TLR that recognises dsRNA and is also 
unique through its exclusive use of TRIF, rather than other 
adaptor proteins such as MyD88. Although generally thought 
to initiate host anti-viral defences, TLR3 deficiency studies 
have paradoxically implicated TLR3 in the pathogenesis of 
several viral diseases such as that caused by West Nile virus. 

Table 1. Inhibitors and Modulators of TLR3 Signalling 

 

Name Mode of inhibition Ref. 

HCV NS3/4a protease Cleavage of TRIF [99] 

Caspases Cleavage of TRIF [93] 

RIP3 Competes with RIP1 for binding to TRIF [87] 

PIASy Exact mechanism unknown [100] 

SARM Inhibits TRIF [101] 

A20 Associates with (i) TRIF or (ii) TBK1 and IKKs [102, 103] 

SHIP-1 Interacts with TBK1 [108] 

SHP1 Inactivates IRAK-1 and promotes type I IFN  production [104] 

SHP2 Inhibits TBK1 and blocks type I IFN production [107] 

VVA46R Binds to TRIF and inhibits signalling [115] 

VVA52R Inhibits TRAF6 and IRAK2-mediated NF- B activation [115] 
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The TLR3 activated pathways can be modulated at many 
points, sometimes bending signalling in a pro-inflammatory 
direction at the expense of the anti-viral response. Further 
study of signalling induced by dsRNA may provide novel 
therapeutic targets for the treatment of viral induced pro-
inflammatory disease. 
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ABBREVIATIONS 

ER = Endoplasmic reticulum 

CARD = Caspase recruitment domains 

DAI = DNA-dependent activator of IFN-regulatory  
   factors 

DC = Dendritic cell 

dsRNA = Double stranded RNA 

eIF2  = Eukaryotic initiation factor 2 

FADD = Fas-Associated protein with Death Domain  

IAD = IRF association domain 

iDC = Immature dendritic cell 

IFN = Interferon 

IKK = I B kinase 

IL-6 = Interleukin 6 

IL-8 = Interleukin 8 

IPS-1 = IFN  promoter stimulator 

IRAK = Interleukin-1 receptor associated kinase 

IRE = Interferon response element 

IRF = Interferon regulatory factor 

ISG = Interferon stimulated gene 

ISRE = Interferon stimulated response element 

ITIM = Immunoreceptor tyrosine-based inhibitory  
   motif  

LPS = Lipopolysaccharide 

LRR = Leucine rich repeat 

MAPK = Mitogen activated protein kinase  

MDA5 = Melanoma differentiation-associated gene-5 

MEF = Mouse embryonic fibroblast 

NAK = NFkappaB-activating kinase 

NAP1 = NAK associated protein 1  

NF-kB = Nuclear Factor-KappaB 

NS1 = West Nile virus (WNV) nonstructural protein  
   NS1 

PAMP = Pathogen associated molecular pattern 

PI3K = Phosphoinositide 3-kinase 

PIASy = Protein inhibitor of activated STAT  

PKR = Protein kinase R 

poly I:C = Polyinosinic:polycytidylic acid 

PRR = Pattern recognition receptor 

PTV = Punta toro virus 

RHIM = RIP homology interaction motif 

RIG-I = Retinoid inducible gene 

RIP-1 = Receptor interacting protein-1 

RLR = RIG-I like receptor 

RSV = Respiratory syncytial virus 

SARM = Sterile alpha and TIR motif –containing  
   protein  

SHP-1 = Src-homology 2 -domain-containing tyrosine  
   phosphatase 

SIKE = Suppressor of I K  

siRNA = silencing RNA 

SIRP  = Signal regulatory protein 

SOCS1 = Suppressors of cytokine signalling 

STAT1 = Signal transducer and activator of  
   transcription  

TAK1 = Transforming growth factor –activated  
   kinase 1 

TANK = TRAF family member-associated NFKB 

TBK1 = TANK-binding kinase 1  

TICAM = TIR-containing adapter molecule 

TIR = Toll/Interleukin-1 receptor 

TLR = Toll like receptor 

TRADD = TNFR associated death domain 

TRAF = TNF Receptor Associated Factor 

TRAM = TLR related adaptor protein 

TRIF = TIR-domain-containing adapter-inducing  
   interferon-  

WNV = West nile virus 

WT = Wild type 
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